Lecture 2

Maxwell’s Equations,
Differential Operator Form

Maxwell’s equations were originally written in integral form as has been shown in the previous
lecture. Integral forms have nice physical meaning and can be easily related to experimental
measurements. However, the differential operator form! can be easily converted to differential
equations or partial differential equations where a whole sleuth of mathematical methods and
numerical methods can be deployed. Therefore, it is prudent to derive the differential operator
form of Maxwell’s equations.

2.1 Gauss’s Divergence Theorem

We will first prove Gauss’s divergence theorem.? The divergence theorem is one of the most
important theorems in vector calculus [32-35]. It says that:

///VdVV D= #SD -dS (2.1.1)

The right-hand side of the above is the total electric flux D that comes out of the surface S.
In the above, V - D is defined as

D -dSs

D= Lm Has
V-D Alxl/rgo AV (2.1.2)
The above implies that the divergence of the electric flux D, or V-D is given by first computing
the flux coming (or oozing) out of a small volume AV surrounded by a small surface AS and
taking their ratio as shown on the right-hand side of the above. As shall be shown, the ratio

IWe caution ourselves not to use the term “differential forms” which has a different meaning used in
differential geometry for another form of Maxwell’s equations.
2Named after Carl Friedrich Gauss, a precocious genius who lived between 1777-1855.
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16 ELECTROMAGNETIC FIELD THEORY

has a finite limit and eventually, we will find a simplified expression for it. We know that if
AV = 0 or small, then the above implies that,

AVV-D ~ # D dS (2.1.3)
AS

First, we assume that a volume V' has been discretized? into a sum of small cuboids, where
the ¢-th cuboid has a volume of AV; as shown in Figure 2.1. Then

Vx> AV (2.1.4)

Figure 2.1: The discretization of a volume V into a sum of small volumes AV; each of
which is a small cuboid. Stair-casing error occurs near the boundary of the volume V
but the error diminishes as AV; — 0.

30ther terms used are “tesselated”, “meshed”, or “gridded”.



Maxwell’s Equations, Differential Operator Form 17

Figure 2.2: Fluxes from adjacent cuboids cancel each other leaving only the fluxes at the
boundary that remain uncancelled. Please imagine that there is a third dimension of the
cuboids in this picture where it comes out of the paper.

Then from (2.1.2) and (2.1.3), for the i-th cuboid,

By summing the above over all the cuboids, or over i, one gets

S AVV-Di~ Y D; - dS; ~ # D - dS (2.1.6)
i i AS; S

It is easily seen that the fluxes out of the inner surfaces of the cuboids cancel each other,
leaving only fluxes flowing out of the cuboids at the edge of the volume V as explained in
Figure 2.2. The right-hand side of the above equation (2.1.6) becomes a surface integral
over the surface S except for the stair-casing approximation (see Figure 2.1). However, this
approximation becomes increasingly good as AV; — 0. Moreover, the left-hand side becomes

a volume integral, and we have
/// dW-Dz#D-dS (2.1.7)
v s

The above is Gauss’s divergence theorem.

2.1.1 Some Details

Next, we will derive the details of the definition embodied in (2.1.2). To this end, we evaluate
the numerator of the right-hand side carefully, in accordance to Figure 2.3.
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Figure 2.3: Figure to illustrate the calculation of fluxes from a small cuboid where a
corner of the cuboid is located at (xo,yo, 20). There is a third z dimension of the cuboid
not shown, and coming out of the paper. Hence, this cuboid, unlike that shown in the
figure, has six faces.

Accounting for the fluxes going through all the six faces, assigning the appropriate signs
in accordance with the fluxes leaving and entering the cuboid, one arrives at the following six
terms

D - dS = —D.(z0, Y0, 20) AyAz + D (zo + Az, yo, 20) AyAz
AS

=Dy (20, Y0, 20) AzAz + Dy (0, Yo + Ay, 20) AzAz
—D.(z0, Y0, 20) AzAy + D (0, Y0, 20 + Az)AzAy (2.1.8)

Factoring out the volume of the cuboid AV = AzAyAz in the above, one gets
D -dS ~ AV {[Dy(z¢ + Ax,...) — Dy(xo,...)] /Ax

AS
+[Dy(-- 90 +Ay,...) —Dy(...,%,...)] /Ay
+[D.(-..,20+Az) = D,(...,20)] /Az} (2.1.9)

Or that

#D~dSN8DI+aDy+8Dz
AV T x| 9y | 0z

In the limit when AV — 0, then

_ @$D.ds oD, oD, oD,
AR T Tay T e VP (2.1.11)

(2.1.10)
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where
0 0 0
=f— 4+ J=— + 22— 2.1.12
v x8x+y6y+zﬁz ( )
D=2D,+ 9D, + 2D, (2.1.13)

The above is the definition of the divergence operator in Cartesian coordinates. The diver-
gence operator V- has its complicated representations in cylindrical and spherical coordinates,
a subject that we would not delve into in this course. But they can be derived, and are best
looked up at the back of some textbooks on electromagnetics.

Consequently, one gets Gauss’s divergence theorem given by

///VdVV ‘D= #SD -dS (2.1.14)

2.1.2 Gauss’s Law in Differential Operator Form

By further using Gauss’s or Coulomb’s law implies that

#913 S == ///dV@ (2.1.15)

We can replace the left-hand side of the above by (2.1.14) to arrive at

///dVV D- // Vo (2.1.16)

When V' — 0, we arrive at the pointwise relationship, a relationship at an arbitrary point in
space. Therefore,

V-D=yp (2.1.17)

2.1.3 Physical Meaning of Divergence Operator

The physical meaning of divergence is that if V-D # 0 at a point in space, it implies that there
are fluxes oozing or exuding from that point in space [36]. On the other hand, if V-D = 0,
it implies no flux oozing out from that point in space. In other words, whatever flux that
goes into the point must come out of it. The flux is termed divergence free. Thus, V- D is a
measure of how much sources or sinks exist for the flux at a point. The sum of these sources
or sinks gives the amount of flux leaving or entering the surface that surrounds the sources
or sinks.

Moreover, if one were to integrate a divergence-free flux over a volume V', and invoking
Gauss’s divergence theorem, one gets

#D-dSzO (2.1.18)
S

In such a scenerio, whatever flux that enters the surface S must leave it. In other words, what
comes in must go out of the volume V', or that flux is conserved. This is true of incompressible
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fluid flow, electric flux flow in a source free region, as well as magnetic flux flow, where the
flux is conserved.

Figure 2.4: In an incompressible flux flow, flux is conserved: whatever flux that enters a
volume V must leave the volume V.

2.2 Stokes’s Theorem

The mathematical description of fluid flow was well established before the establishment of
electromagnetic theory [37]. Hence, much mathematical description of electromagnetic theory
uses the language of fluid. In mathematical notations, Stokes’s theorem is*

&]ﬁcEdl://SVxEdS (2.2.1)

In the above, the contour C is a closed contour, whereas the surface S is not closed.’
First, applying Stokes’s theorem to a small surface AS, we define a curl operator® Vx at
a point to be measured as

95 E-dl
P AC
(VXE) -n Alggo AS (2.2.2)

In the above, E is a force per unit charge, and V x E is a vector. Taking gﬁACE -dl as a
measure of the torque or rotation of the field E around a small loop AC, the ratio of this
rotation to the area of the loop AS has a limit when AS becomes infinitesimally small. This

4Named after George Gabriel Stokes who lived between 1819 to 1903.

5In other words, C' has no boundary whereas S has boundary. A closed surface S has no boundary like
when we were proving Gauss’s divergence theorem previously.

6Sometimes called a rotation operator.
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ratio is related to (V x E) - nn where 7 is a unit normal to the surface AS. As in angular
momentum, the direction of the torque is along the axis of rotation of the force.

Figure 2.5: In proving Stokes’s theorem, a closed contour C' is assumed to enclose an
open surface S. Then the surface S is tessellated into sum of small rects as shown. Stair-
casing error at the boundary C' vanishes in the limit when the rects are made vanishingly
small.

First, the surface S enclosed by C'is tessellated (also called meshed, gridded, or discretized)
into sum of small rects (rectangles) as shown in Figure 2.5. Stokes’s theorem is then applied
to one of these small rects to arrive at

where one defines AS; = nAS. Next, we sum the above equation over ¢ or over all the small
rects to arrive at

Z ﬁc_ E;-dl, = Z V x E; - AS; (2.2.4)

?

Again, on the left-hand side of the above, all the contour integrals over the small rects cancel
each other internal to S save for those on the boundary. In the limit when AS; — 0, the
left-hand side becomes a contour integral over the larger contour C, and the right-hand side
becomes a surface integral over S. One arrives at Stokes’s theorem, which is

éE-dl://g(VxE)-dS (2.2.5)
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Figure 2.6: We approximate the integration over a small rect using this figure. There
are four edges to this small rect.

Next, we need to prove the details of definition (2.2.2) using Figure 2.6. Performing the
integral over the small rect, one gets

?g E - dl = E;(z0,Y0, 20) Az + Ey(xo + Az, yo, 20) Ay
AC

— Ey(z0,y0 + Ay, 20) Az — Ey (0, Y0, 20) Ay
E E A
— AxAy ( +(Z0, Y0, 20) « (20, Yo + Ay, 20)

Ay Ay
~ Ey(x0, Y0, 20) n Ey(zo + Am,ymzo))

Az Az
(2.2.6)

We have picked the normal to the incremental surface AS to be Z in the above example,
and hence, the above gives rise to the identity that

E.dl
) Y

lim

AS=0 AS " oz

Picking different AS with different orientations and normals 7 where n = Z o
gets

=

>
I

<
]
=
[¢)]

B, A
oy E,=3-VxE (2.2.8)
0

E,

0
0z
g . UxE (2.2.9)

0z o ° -
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The above gives the z, y, and z components of V x E. It is to be noted that V x E is a
vector. In other words, one gets

N 0 (0 0

0 0
2 —F, — —F 2.2.1
+2Z <8x v 3y w) ( 0)
where
0 0 0
_ ; 5 2.11
v o T, T ias (2.2.11)

2.2.1 Faraday’s Law in Differential Operator Form

Faraday’s law in integral form is given by’

¢E~d1: fi//BwiS (2.2.12)
c dt JJ s

Assuming that the surface S is not time varying, one can take the time derivative into the
integrand and write the above as

55 E-dl= —/ 9p.48 (2.2.13)

In the above, d/dt becomes 0/partialt inside the integrand since B = B(r, t) is a multivariable
function. One can replace the left-hand side with the use of Stokes’ theorem to arrive at

//SVXE~dS//SaatB~dS (2.2.14)

In the above, dS is an arbitraty elemental surface, and the surface S can be made very small.
Then the integral can be removed, and one has

V x E(r,t) = —%B(r,t) (2.2.15)

The above is Faraday’s law in differential operator form.
In the static limit, %—1? =0, giving

VxE=0 (2.2.16)

"Faraday’s law is experimentally motivated. Michael Faraday (1791-1867) was an extraordinary exper-
imentalist who documented this law with meticulous care. It was only decades later that a mathematical
description of this law was arrived at.
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2.2.2 Physical Meaning of Curl Operator

The curl operator V x is a measure of the rotation, the torque, or the circulation of a field at
a point in space.® On the other hand, SSAC E - dl is a measure of the circulation of the field E
around the loop formed by C. Again, the curl operator has its complicated representations
in other coordinate systems like cylindrical or spherical coordinates, a subject that will not
be discussed in detail here.

It is to be noted that our proof of the Stokes’s theorem is for a flat open surface S, and
not for a general curved open surface. Since all curved surfaces can be tessellated into a union
of flat triangular surfaces according to the tiling theory of simplices,” the generalization of
the above proof to curved surface is straightforward. An example of such a triangulation of
a curved surface into a union of flat triangular surfaces is shown in Figure 2.7.

Figure 2.7: An arbitrary curved surface can be triangulated with flat triangular patches,
called simplices. The triangulation can be made arbitrarily accurate by making the
patches arbitrarily small.

2.3 Maxwell’s Equations in Differential Operator Form

With the use of Gauss’ divergence theorem and Stokes’ theorem, Maxwell’s equations can be
written more elegantly in differential operator forms. They are:

0B

V x E(r,t) = —E(r,t) (2.3.1)
V x H(r,t) = aa—lt)(r,t) +J(r,t) (2.3.2)
V -D(r,t) = o(r,t) (2.3.3)
V- -B(r,t) =0 (2.34)

8In many old textbook, the notation “rot” is still used for the curl or Vx operator.

91t says that any curve in 1D can be approximated by union of line segments, a 2D surface can be
approximated by union of triangles, while a 3D volume can be approximated by union of tetrahedrons. Line
segments, triangles, and tetrahedrons are simplices in 1D, 2D, and 3D.
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These equations are point-wise relations as they relate the left-hand side and right-hand side
field values at a given point in space. Moreover, they are not independent of each other. For
instance, one can take the divergence of the first equation (2.3.1), making use of the vector
identity that V- (V x E) = 0, one gets

_0V-B
ot

=0— VB = constant (2.3.5)

This constant corresponds to magnetic charges, and since they have not been experimentally
observed, one can set the constant to zero. Thus the fourth of Maxwell’s equations, (2.3.4),
follows from the first (2.3.1).

Similarly, by taking the divergence of the second equation (2.3.2), and making use of the
current continuity equation that

do
v.-J+ Eri 0 (2.3.6)
one can obtain the second last equation (2.3.3). Notice that in (2.3.3), the charge density o
can be time-varying, whereas in the previous lecture, we have “derived” this equation from
Coulomb’s law using electrostatic theory.

The above logic follows if 9/0t # 0, and is not valid for static case. In other words, for
statics, the third and the fourth equations are not derivable from the first two. Hence all
four Maxwell’s equations are needed for static problems. For electrodynamic problems, only
solving the first two suffices.

Something is amiss in the above. If J is known, then solving the first two equations implies
solving for four vector unknowns, E, H, B, D, which has 12 scalar unknowns. But there are
only two vector equations or 6 scalar equations in the first two equations. Thus one needs
more equations. These are provided by the constitutive relations that we shall discuss next.

2.4 Historical Notes

There are several interesting historical notes about Maxwell.

e It is to be noted that when James Clerk Maxwell first wrote his equations down, it was
in many equations and very difficult to digest [17,38,39]. It was an eccentric English
genius Oliver Heaviside, an electrical engineer by training, who distilled those equations
into their present form found in textbooks. Putatively, most cannot read Maxwell’s
treatise [38] beyond the first 50 pages [40].

e Maxwell wrote many poems in his short lifespan (1831-1879) and they can be found
at [41].

e Also, the ancestor of James Clerk Maxwell married from the Clerk family into the
Maxwell family. One of the conditions of marriage was that all the descendants of the
Clerk family should adopt the family name Clerk Maxwell. That was why Maxwell was
addressed as Professor Clerk Maxwell in his papers.
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Exercises for Lecture 2

Problem 2-1:
If D = (2y2 + 2)& + 4xy) + 22, find:

1. Volume charge density p, at (—1,0,3).
2. Electric flux through the cube defined by

0<z<1,0<y<1,0<z<1.

3. Total charge enclosed by the cube.

Problem 2-2:
Suppose E = X3y + yx, calculate / E - dl along a straight line in the x-y plane joining

(0,0) to (3,1).



